Mapping the macaque superior temporal sulcus: functional delineation of vergence and version eye-movement-related activity.
نویسندگان
چکیده
It is currently thought that the primate oculomotor system has evolved distinct but interrelated subsystems to generate different types of visually guided eye movements (e.g., saccades/smooth pursuit/vergence). Although progress has been made in elucidating the neural basis of these movement types, no study to date has investigated all three movement types on a large scale and within the same animals. Here, we used fMRI in rhesus macaque monkeys to map the superior temporal sulcus (STS) for BOLD modulation associated with visually guided eye movements. Further, we ascertained whether modulation in a given area was movement type specific and, if not, the modulation each movement type elicited relative to the others (i.e., dominance). Our results show that multiple areas within STS modulate during all movement types studied, including the middle temporal, medial superior temporal, fundus of the superior temporal, lower superior temporal, and dorsal posterior inferotemporal areas. Our results also reveal an area in dorsomedial STS that is modulated almost exclusively by vergence movements. In contrast, we found that ventrolateral STS is driven preferentially during versional movements. These results illuminate an STS network involved in processes associated with multiple eye movement types, illustrate unique patterns of modulation within said network as a function of movement type, and provide evidence for a vergence-specific area within dorsomedial STS. We conclude that producing categorically different eye movement types requires access to a common STS network and that individual network nodes are recruited differentially based upon the type of movement generated.
منابع مشابه
Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST.
Past work has suggested that the medial superior temporal area (MST) is involved in the initiation of three kinds of eye movements at short latency by large-field visual stimuli. These eye movements consist of (1) version elicited by linear motion (the ocular following response), (2) vergence elicited by binocular parallax (the disparity vergence response), and (3) vergence elicited by global m...
متن کاملDistinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements.
In humans, functional imaging studies have demonstrated a homologue of the macaque motion complex, MT+ [suggested to contain both middle temporal (MT) and medial superior temporal (MST)], in the ascending limb of the inferior temporal sulcus. In the macaque monkey, motion-sensitive areas MT and MST are adjacent in the superior temporal sulcus. Electrophysiological research has demonstrated that...
متن کاملFunctional organization of human intraparietal and frontal cortex for attending, looking, and pointing.
We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that ge...
متن کاملFunctional anatomy of biological motion perception in posterior temporal cortex: an FMRI study of eye, mouth and hand movements.
Passive viewing of biological motion engages extensive regions of the posterior temporal-occipital cortex in humans, particularly within and nearby the superior temporal sulcus (STS). Relatively little is known about the functional specificity of this area. Some recent studies have emphasized the perceived intentionality of the motion as a potential organizing principle, while others have sugge...
متن کاملSleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging.
Subjects were trained on a pursuit task in which the target trajectory was predictable only on the horizontal axis. Half of them were sleep deprived on the first post-training night (n = 13). Three days later, functional magnetic resonance imaging revealed task-related increases in brain responses to the learned trajectory, as compared with a new trajectory. In the sleeping group (n = 12) as co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 19 شماره
صفحات -
تاریخ انتشار 2015